Precise Mobile Manipulation
of Small Everyday Objects

Arjun Gupta
Rishik Sathua
Saurabh Gupta
UIUC
UIUC
UIUC
Paper


Many everyday mobile manipulation tasks require precise interaction with small objects, such as grasping a knob to open a cabinet or pressing a light switch. In this paper, we develop Servoing with Vision Models (SVM), a closed-loop framework that enables a mobile manipulator to tackle such precise tasks involving the manipulation of small objects. SVM uses state-of-the-art vision foundation models to generate 3D targets for visual servoing to enable diverse tasks in novel environments. Naively doing so fails because of occlusion by the end-effector. SVM mitigates this using vision models that out-paint the end-effector, thereby significantly enhancing target localization. We demonstrate that aided by out-painting methods, open-vocabulary object detectors can serve as a drop-in module for SVM to seek semantic targets (e.g. knobs) and point tracking methods can help SVM reliably pursue interaction sites indicated by user clicks. We conduct a large-scale evaluation spanning experiments in 10 novel environments across 6 buildings including 72 different object instances. SVM obtains a 71% zero-shot success rate on manipulating unseen objects in novel environments in the real world, outperforming an open-loop control method by an absolute 42% and an imitation learning baseline trained on 1000+ demonstrations also by an absolute success rate of 50%.