
Estimating Perceptual Uncertainty to Predict Robust Motion Plans

Arjun Gupta Michelle Zhang Saurabh Gupta

actual
handle

Space of motion
plans which work

for predicted
parameters

Space of motion
plans which work
for ground truth

parameters

Space of motion
plans which work
for all perturbed

parameters
Predicted

Handle

Predicted
Uncertainty

Actual
Handle

(b)(a) (c) (d)

Predicted
Handle

Predicted
Uncertainty

Actual
Handle

Fig. 1: State estimation from images has errors, predicted handle is off from actual handle in (a). Objects in typical unoccluded views (as in (b)) have
lower error than objects in atypical or occluded views (as in (a)). In this paper, we develop image-conditioned adaptive uncertainity predictors for such
state estimators. In (a) and (b), the maroon keypoint is the predicted handle location, and the green ellipsoid depicts one standard deviation in the handle
keypoint uncertainty (very small in (b)). We utilize this uncertainty to output robust motion plans as shown in (d). Rather than returning a motion plan that
works just for the one inaccurate estimated state (shown by maroon set), we return a plan that works across multiple perturbations based on the predicted
uncertainty (green set). A robust plan from the green set is more likely to succeed for the ground truth parameters, compared to a motion plan from the
maroon set. We demonstrate that using our state uncertainty estimation leads to more robust downstream control.

Abstract— A typical sense-plan-act robotics pipeline is brittle
due to the inherent inaccuracies in the output of the sensing
module and the lack of awareness of the planning module to
those inaccuracies. This paper develops a framework to predict
uncertainty estimates for neural network-based vision models
used for state estimation in robotics pipelines. Our uncertainty
estimates are based directly on the image observation data
and are explicitly trained to model the error distribution on
a held-out calibration set. We also demonstrate how predicted
uncertainties can be used to select robust control strategies.
We conduct experiments on the mobile manipulation problem
of articulating everyday objects (e.g. opening a cupboard)
and demonstrate the quality of estimated uncertainty and its
downstream impact on robustness of inferred control strategies.

I. INTRODUCTION

A typical sense-plan-act robotics pipeline is brittle due to
the inherent inaccuracies in the output of the sensing module
and the lack of awareness of the planning module to those
inaccuracies. Because of the lack of a way to faithfully char-
acterize uncertainties in the output of the sensing model, past
work either focuses on developing better sensing modules or
makes planning overly conservative based on some constant
hand-crafted notions of uncertainty. In this paper, we develop
a) a framework to estimate uncertainty measures for state-of-
the-art state estimators based on deep neural networks and
b) demonstrate how downstream planning can make use of
these uncertainties to output robust control strategies.

Our work is motivated by three key observations. First,
we note that the observation itself may be suggestive of the

Authors are with the University of Illinois, Urbana-Champaign. EMails:
{arjung2, mz32, saurabhg}@illinois.edu. Project website
with more details: https://arjung128.github.io/uncertainty aware planning.

level of uncertainty we could expect in the output of the
vision module. Consider, for example, the different views
of the same drawer in Figure 1 (a, b). Typical unoccluded
object views as in Figure 1 (b) are more likely to have
more accurate state estimation as compared to clipped views
from odd angles as in Figure 1 (a). Thus, with the right
modeling, it should be possible to extract uncertainty es-
timates. Our second insight is to cast uncertainty estimation
directly as a learning problem itself. A popular line of past
research estimates uncertainties by measuring variance in
model ensembles [1]–[3] or data perturbations [4]. This how-
ever might provide an erroneously tight estimate when, for
example, all models agree but are wrong. We instead directly
learn an observation-conditioned model to predict the error
distribution on a held-out calibration set. Our experiments
suggest that this is a better uncertainty measure than one
obtained from model ensembles. Our last insight is about use
of uncertainties for making motion plans robust. Rather than
predicting strategies that only work for the one predicted
state estimate, a strategy that works for many perturbed
samples (according to the uncertainty model) may be more
likely to work for the actual instance (see Figure 1 (c, d)).

We use the problem of articulating everyday objects
(opening doors and cupboards) from [5] as our test-bed.
Tackling this problem requires predicting articulation pa-
rameters for these objects from RGB-D images. We adapt
Mask RCNN [6] for this task by adding additional heads to
predict these articulation parameters and the associated un-
certainties (Figure 2). While the parameter prediction heads
are trained on the training set, the uncertainty prediction
heads are trained on predictions from the parameter heads on

https://arjung128.github.io/uncertainty_aware_planning

a separate calibration set to maximize the log likelihood of
the ground truth given the prediction. This is a more faithful
estimate of the errors that the model is likely to make on
novel data (predictions on the training set are typically overly
accurate). This way of modeling uncertainties incorporates
our first two insights: it is conditioned on the observation
and it directly learns to model the actual error distribution.

We also show how the obtained uncertainty estimates can
be used for predicting robust motion plans. Typical motion
planners (e.g. RRTs [7] or PRMs [8]) solve each problem
in isolation and there is no obvious notion of robustness to
state estimation. We thus adopt the trajectory optimization
view from Gupta et al. [5] and predict strategies (essentially,
initialization of a trajectory optimizer) that work for the most
perturbations sampled from the learned uncertainty model
rather than just the predicted parameters.

Our experiments evaluate the effectiveness of our proposed
framework at a) predicting good uncertainties (as measured
using the negative log-likelihood on the test set), and b)
their downstream utility at improving robustness of gener-
ated plans. We compare against ensembling and a number
of design choices (types of inputs, dealing with outliers,
and parameterization of the error model). We find our
design choices to be effective and that modeling uncertainty
adaptively (i.e. predicting uncertainty specifically for each
instance) is better than using a non-adaptive uncertainty.
Code will be made publicly available upon acceptance.

II. RELATED WORK

Uncertainty Estimation in Machine Learned Models.
Unlike probabilistic models like Gaussian Processes [9],
it has been challenging to provide uncertainty estimates
on the output of expressive deep neural network models.
Bayesian neural networks [10], [11], while computationally
expensive offer the most principled solution. Researchers
have proposed use of model ensembling [1], [2] (or multiple
passes through a network with Dropout layers [3]) as scalable
alternatives. [4] use invariance to image transformations as a
measure of the model’s confidence. Explicit calibration using
a held-out set has also been pursued [12], e.g. histogram
binning [13], isotonic regression [14], Platt’s scaling [15].
Conformal prediction techniques convert such calibrations
into confidence intervals [16]. Our work builds uncertainty
estimates for state estimates predicted from an object detector
and we demonstrate their utility towards obtaining robust
motion plans. This is similar in spirit to recent work from
Liu et al. [17] that obtains multiple instance segments to
minimize double pick errors for an apparel picking robot.
Motion Planning under Uncertainty. A large body of work
studies motion planning under uncertainty [18]–[20]. A full
literature survey is beyond the scope of the paper but we
provide an overview. Motion planning under uncertainty is
most typically thought of as a partially observed Markov
decision process (POMDP) [21], which are computationally
difficult to solve [22], [23]. Our work can be thought of
as solving a single-step POMDP: we use the uncertainty-
predicting vision models to construct the belief and return

motion plans that are optimal under this belief. We do not
develop a new POMDP solver. Instead, our focus is on build-
ing vision models that output uncertainties to build beliefs
and demonstrating their utility for downstream planning.
Vision Models for State Estimation. Prior work has adapted
object detectors pipelines to estimate state for articulated
objects e.g. [24]–[27]. Our focus is orthogonal and our
contributions are compatible with these recent advances.

III. OVERVIEW

Building robust controllers requires us to a) build uncer-
tainty estimates for vision models, and b) design control
strategies that can take these uncertainity estimates into ac-
count. We first present UfC (Uncertainties from Calibration),
our approach for estimating uncertainties in Section IV and
then outline UAP (Uncertainty Aware Planning), the proce-
dure for using them to find robust controllers in Section V.
We then discuss a concrete application of these ideas for the
problem of predicting motion plans to articulate everyday
objects (e.g. opening cupboards and drawers) in Section VI.
This application involves building vision models to predict
articulation parameters for drawers and cupboards (handle
locations and surface orientation). We describe how we
build vision models to predict these parameters along with
associated uncertainties, and then show how we can use these
estimates to predict robust motion plans.

IV. ESTIMATING PREDICTION UNCERTAINTIES FROM
VISION MODELS

Our methods, Uncertainties from Calibration (UfC), as-
sumes access to a training dataset D and a calibration dataset
C. We train vision models on the training dataset D and train
an uncertainty prediction model on the calibration dataset C.
Let’s assume that training samples in datasets D and C take
the form {(xi, yi), . . .}. We train state estimators on D via:

argmin
f

∑
(xi,yi)∈D

(f(xi)− yi)
2 (1)

Given such a vision model f , we train a model g(x)
to represent pg(yi|f(x)). Predictions of f on the training
dataset D are overly accurate. Thus, it is unsuitable to train
g on D. This is where the held-out calibration set C comes
in. We train g to model probability of the true state estimate
yi given the predicted state estimate f(x) on samples from
the calibration set C. g is trained by minimizing the negative
log likelihood (NLL):

argmin
g

∑
(xi,yi)∈C

− log pg(yi|f(x)) (2)

In our work, we model pg as a Gaussian distribution.
Specifically, we only model the standard deviation σ of this
Gaussian distribution and use f(x) as the mean. Predicting
a mean correction to f(x) is unnecessary. If a meaningful
mean could be learned, it would have already been learned
inside f during training of the base model on D.

Second, in practice we may not be given a separate
calibration set, or training datasets may not be large enough
to afford construction of a separate calibration set. We adopt
a k-fold hold one out strategy to circumvent this issue. We
split the data into k-folds, train f on k−1 folds and store its
predictions on the kth fold. We repeat this process k times
over to obtain held-out predictions for training g.

Lastly, we found it useful to omit samples with large errors
(i.e. a large ||yi − f(xi)||2) while training g(x).

V. USING UNCERTAINTY ESTIMATES FOR PREDICTING
ROBUST MOTION PLANS

The vision model f along with the associated uncertainty
model g allow us to a) assess the robustness of controllers
and motion plans to errors in state estimation, and b) select
controllers / motion plans that will be most robust to the
expected amount of uncertainty. We broadly outline how we
do this and then show a concrete examples for the task of
opening doors and drawers in Section VI.

Output from f, g provide a probabilistic state estimate
N (f(x), g(x)). Let us assume we have different controllers
or motion plans πk that we are trying to chose from. These
controllers can present some trade-offs: some controllers
can be highly performant but only work in certain spe-
cific situations, while others could be less performant but
could work in broader situations. Rather than selecting a
controller that gives the best performance on the estimated
state f(x), we instead pick the one that is expected to
work across most perturbations around the predicted state
estimate f(x) modulated by the predicted standard deviation
g(x). More formally, if ρ(πk, y) measures the fitness of
a particular controller πk, rather than selecting one via:
πmode = argmaxk ρ(πk, f(x)), we select one via:

πrobust = argmax
k

∑
y∼N (f(x),g(x))

ρ(πk, y) (3)

As N (f(x), g(x)) models the distribution of the actual
state, πrobust is more likely to work than πmode. In practice, we
found rescaling the standard deviation of all state estimates
by a single scalar factor of λ improved performance.

VI. CONCRETE APPLICATION: PREDICTING MOTION
PLANS FOR OPENING DRAWERS AND CUPBOARDS

A. Background

Articulating everyday objects (e.g. opening drawers and
cupboards) requires precise motion of the end-effector under
tight task constraints. This requires a) precise estimation of
the articulation parameters for the object (handle location, ra-
dius of motion for cupboards / pull direction for drawers), b)
mapping estimated articulation parameters into end-effector
poses, and c) converting end-effector pose trajectories into
robot joint trajectories that lead the end-effector to precisely
track the desired trajectory. Step (b) of going from articula-
tion parameters to end-effector trajectories is a deterministic
function (let’s denote it with β – refer to [5] for details).

We build upon past work from Gupta et al. [5] that
assumes ground truth articulation parameters and tackles

the problem of converting end-effector pose trajectories into
robot joint angle trajectories. Specifically, rather than casting
it as constrained motion planning problem, Gupta et al. view
it as a trajectory optimization problem. They design SeqIK,
a trajectory optimizer specifically suited to this task. SeqIK
translates an initial robot configuration (base position and
arm joint angles denoted by θ0) into a strategy that can be
decoded into a motion plan (desired joint angle trajectory)
when provided with a desired end-effector pose trajectory
w, via SeqIK(θ0)(w). They then train a neural network to
predict a set of good initializations Θ0 for SeqIK. Motion
planning happens by searching through this small set of good
initializations. This lets them produce accurate motion plans
within only a few seconds. An advantage of this formulation
is that a strategy SeqIK(θ0) can be adapted to slightly
different articulation parameters by just changing w.

B. Problem Formulation

We extend their framework to work with predicted articu-
lation parameters as opposed to ground truth articulation pa-
rameters. Given access to vision models that make (possibly
inaccurate) predictions for articulation parameters, the goal
is to output strategies that will be able to produce motion
plans for the actual object.

C. Applying UfC and UAP

We build a vision model f to predict articulation parame-
ters. Given an input RGB-D image of the object x, f predicts
the articulation parameters f(x) which can be converted into
end-effector trajectory via β(f(x)). Predictions f(x) may
not be perfect and selecting a strategy seqIK(θ0) purely based
on how well it will work for β(f(x)) may not work for the
actual articulation parameters. This is where the uncertainty
modeled by g(x) comes in. It allows us to select the strategy
SeqIK(θ0) that works for a set of articulation parameters
around f(x) and thus has a higher chance of working for
the actual object.

1) Building Vision Model (i.e. f): More specifically, we
adopt Mask RCNN [6] to a) detect drawers and cupboards
and b) predict articulation parameters for the detected in-
stances. We do this by adding additional heads. For drawers,
these additional heads predict a) the 2D coordinate of the
handle, and b) the orientation of the drawer surface in the
top-view. The 2D handle coordinate is lifted to 3D using
the depth image. For cupboards, we similarly predict the 2D
coordinate for the handle and surface orientation. We assume
that the object extents can be reliably estimated from the
extent of the 2D segment already predicted by Mask RCNN.
We treat the 3 outputs as separate independent scalar predic-
tions. Figure 2 shows the architectural modifications.

2) Learning Uncertainty Estimator (i.e. g): For the un-
certainty estimator, we attach 2 additional heads to Mask
RCNN: one each for handle and the surface normal un-
certainty (see Figure 2). We model the distributions (x and
y keypoint error, and surface normal error) as independent
Gaussians, though other choices (joint modeling / other dis-
tributions) could also be made. Each of these heads consists

Mask R-CNN

Class and
Bbox

ROIAlign

Masks

2D Handle
Locations

1D Surface
Normal

Handle
Uncertainty

Surface
Normal

Uncertainty

Stop Gradient

Trained on D Trained on C

Fig. 2: Overview of state estimator f and the uncertainty predictors g. Both are realized by adding additional heads to Mask RCNN [6]. f is trained
on the training set D, while g is trained on the calibration set C. Both f and g share the same backbone, but to control overfitting in g gradients don’t
flow back from g to the backbone.

of three convolutional layers, followed by a fully connected
layer to predict category-specific standard deviation for the
Gaussian distribution. To prevent overfitting, we keep the
Mask RCNN backbone frozen (the stop gradient in Figure 2).

Rather than using a separate calibration set, we generate
held-out predictions through 5-fold training and prediction:
we split the training set into five disjoint subsets, train on four
folds, generate predictions on the fifth folds, and repeat this
process five times over. These leads to held-out predictions
on the training set, which we use to train g. Lastly, since
the error distribution is long-tailed, we remove 10% samples
with the worst errors.

3) Using f and g for Robust Motion Plan Prediction:
MPAO [5] returns an initialization θ0 (from the set of
initializations Θ0 returned from a neural network) that leads
to a good plan. Here, a good plan is one that a) tracks the
desired end-effector trajectory and b) there isn’t an antici-
pated collision with the articulated object, the robot itself, or
the geometry depicted in the depth image. Let’s denote the
function that does these checks with IsPlanGood. MPAO uses
ground truth articulation parameters to obtain the reference
end-effector trajectory (w) to test the goodness of the plan,
i.e. it returns argmaxθ0∈Θ0

IsPlanGood [w,SeqIK(θ0)(w)].
Naively, one could just use articulation parameters pre-

dicted from our Mask RCNN model with this procedure to
obtain motion plans, i.e.

argmax
θ0∈Θ0

IsPlanGood [β(f(x)),SeqIK(θ0)(β(f(x)))] (4)

However, because predictions may be off from ground
truth parameters, initializations that work for f(x) may not
actually work for w. To combat this, we make use of our
learned uncertainty estimator g to find initializations that are
robust to state estimation errors via:

argmax
θ0∈Θ0

∑
y∼N (f(x),g(x))

IsPlanGood [β(y),SeqIK(θ0)(β(y))]

(5)
We approximate the sum using 20 samples. This yields a

new robust ranking of the top-100 initializations, from which
the best initialization is returned.

VII. EXPERIMENTS

Our experiments evaluate: a) how does the quality of
our uncertainty estimates compare to those obtained from

TABLE I: Median Negative Log Likelihood (NLL) over the test set (lower
is better). Our method outperforms uncertainty estimates from ensembling.

Prismatic Hinge Prismatic Hinge
(Handle) (Handle) (Surf. Norm.) (Surf. Norm.)

Ensembling 3.87 4.00 -1.80 -1.87
Ours -2.20 -2.58 -1.92 -1.93

ensembling (Section VII-B), b) what design choices lead
to good models for predicting uncertainty (Section VII-C),
and c) whether the use of uncertainty estimators leads to
more robust downstream control (Section VII-D). We start
by noting the performance of Mask RCNN for the state
estimation task at hand (Section VII-A) and then proceed
to present the main results.

A. State Estimation Performance

We focus our study to the two categories with the most
data in the dataset from [5]: drawers and vertical hinges
(horizontal hinges (the remaining 2 categories) had an order
of magnitude less data and state estimators had very poor
performance). On the test set, our model achieves a 8.75
pixel mean and 2.15 pixel median L2 keypoint error for the
handle location, and a 0.06 radian mean and 0.01 radian
median absolute error for the surface normal prediction
across prismatic and vertical hinge objects.

B. Uncertainty Evaluation

Our primary baseline is an ensembling-based approach
that uses the standard deviation across five predictions from
the 5 bootstrapped Mask RCNN models as the uncertain-
ity estimate. We use the median negative log likelihood
to measure the effectiveness of the uncertainty modeling
(mean NLL was dominated by outliers). Table I shows the
results. We observe that ensembling obtains worse NLL than
our method across all 4 cases: 2 articulation types × 2
articulation parameters.

C. Uncertainty Evaluation (Ablations)

We perform a number of ablations to study which design
choices lead to the best uncertainty modeling.

1) Model Input: First, we investigate what inputs to g are
the best for modeling uncertainty. We experiment with 3 vari-
ants. a) No input, this amounts to simply fitting a Gaussian
to the errors. b) 2D object location in the image, represented

TABLE II: Median NLL over the test set. Conditioning on image features
leads to best uncertainty modeling.

Prismatic Hinge Prismatic Hinge
(Handle) (Handle) (Surf. Norm.) (Surf. Norm.)

No Input -2.02 -1.63 -1.46 -1.46
2D Object Location -2.22 -2.39 -1.60 -1.68
Object Appearance -2.20 -2.58 -1.92 -1.93

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0
NLL

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 D

at
a

Prismatic (Handle)

No Input
2D Object Location
Object Appearance

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0
NLL

0.0

0.2

0.4

0.6

0.8

1.0
Prismatic (Surface Normal)

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0
NLL

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 D

at
a

Vertical Hinge (Handle)

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0
NLL

0.0

0.2

0.4

0.6

0.8

1.0
Vertical Hinge (Surface Normal)

Fig. 3: Cumulative plot of negative log likelihoods (lower better) on the
test set for different attributes of different categories. Even though we only
report the medians in the other tables, the entire NLL distribution improves.

as the top-left and bottom-right corners ([x, y, x+w, y+h])
of the detection box. This can capture trends such as objects
in the center of the image have lower error than objects at
the corners. c) Object Appearance, represented as ROI-Align
features of the detection box.

Table II reports the median negative log likelihood over
the test set for different input choices. 2D object location
in the image is predictive of the uncertainty but appearance
features leads to the best uncertainty estimates overall. The
gap between conditioning on image features and the objcet
location is particularly large for the surface normal error
estimation. Figure 3 shows cumulative plots of the fraction
of data as a function of the negative log likelihood on the
test set. Not only is the median better when the uncertainty
estimators use image features, but a larger fraction of the
samples attain a low loss relative to the baselines.

2) Uncertainty Parameterization: pg is modelled as a
Gaussian distribution, We investigate how to best model this
Gaussian. Specifically, for the most performant models (ones
that use object appearance), we experiment with variants
where g predicts a) only the mean, b) only the standard
deviation, or c) both the mean and standard deviation of the
Gaussian distribution. When the model only predicts a mean,
we use the standard deviations from the No Input model
above to compute the negative log likelihood. Mean is set to
0 for the model that only predicts a standard deviation.

Table III shows the results. Predicting only the mean does
poorly. This is not surprising as, if it was possible to predict
the mean of the error to any extent, then the original Mask
RCNN models would have done so to reduce their prediction
errors. Predicting both the mean and standard deviation is
more expressive, and does better. While this method could
also in principle memorize errors on the training set and
predict low standard deviations, in practice, limited model

TABLE III: Median NLL over the test set. Predicting standard deviation
only leads to best uncertainty modeling.

Prismatic Hinge Prismatic Hinge
(Handle) (Handle) (Surf. Norm.) (Surf. Norm.)

Mean Only 0.59 0.60 0.62 0.62
Mean and Std -2.07 -2.41 -1.95 -2.02
Std Only -2.20 -2.58 -1.92 -1.93

TABLE IV: Median NLL over the test set. Removing outliers from the
training set helps uncertainty modeling significantly.

Prismatic Hinge Prismatic Hinge
(Handle) (Handle) (Surf. Norm.) (Surf. Norm.)

w/ Outliers -2.05 -1.94 -1.94 -1.97
w/o Outliers -2.20 -2.58 -1.92 -1.93

capacity and regularization makes this difficult to do. Finally,
we observe that predicting only the standard deviation of the
distribution leads to the best performance. Intuitively, this
suggests that while such an uncertainty estimation model
cannot predict the exact error, it can learn to model the
distribution of the error.

3) Removing Outliers: As noted above, there are a non-
trivial number of large-error outliers in the dataset. We did
not train on instances with a handle error larger than the
90th-percentile error value. We check if this was necessary.

Table IV shows our results. We observe that the median
loss is much lower for the model trained without outliers
for handles. We do not see a gap for surface normal, as
the outliers for surface normals were not removed from the
training set. Note that the test set is identical between the two
methods, i.e. it contains outliers. This result suggests that the
uncertainty estimator caters to the outliers when trained with
outliers: if the model predicts a small standard deviation,
which would be optimal for the vast majority of the dataset,
the loss it would incur due to the extreme outliers would be
enormous, discouraging it from doing so.

4) Visualizations: Figure 4 (top) visualizes uncertainty
predictions for various views of the same object. We observe
that more typical views of the object and when the object
is close to the center of the image lead to low uncertainty
estimates, whereas oblique views of the object as well as
clipping seem to increase the uncertainty of the model.

Figure 4 (bottom) visualizes the predicted uncertainty
using our image-based uncertainty estimation models across
the dataset. We observe that the predicted handle uncertainty
tends to be aligned with the handles, i.e. vertically-oriented
handles tend to have a larger vertical uncertainty, and vice
versa. Since the handles were labelled by human annotators
to select one keypoint, this reveals an interesting dataset
bias where different human annotators may have selected
different points along the handle as labels. This suggests
that the image-based models are able to extract signal for
modeling uncertainty from visual cues, unlike methods which
are not conditioned on the image.

D. Downstream Application

We use the setup described in Section VI-A and Sec-
tion VI-C.3 to investigate whether our perceptual uncertainty

Fig. 4: Top: Uncertainty in keypoint estimation (green ellipsoid depicts 1 standard deviation), for the same object, varies as a function of viewpoint. Poorer
views (atypical or occluded or truncated) have higher uncertainty. Bottom: Uncertainity in 2D handle location as captured by our model. Our image-based
uncertainty models correctly capture the variation in the handle location in the dataset (can be marked anywhere along the handle length).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.68
0.69
0.70
0.71
0.72
0.73
0.74

Su
cc

es
s R

at
e

Prismatic (e.g. Drawers)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Lambda

0.20

0.22

0.24

0.26

0.28

Su
cc

es
s R

at
e

Vertical Hinge (e.g. Cabinets)

MPAO [5]
No Input
Object Appearance

Fig. 5: Success rate as a function of λ for downstream task on val set.

models can lead to improved downstream robustness. We
specifically compare against a) using no uncertainity, b) using
a non-adaptive category-level uncertainty (i.e. the one com-
ing from no-input UfC), and c) using adaptive uncertainties
output by our full UfC model.

Evaluation Protocol. Given a ranking of initializations,
we decode each initialization to a motion plan for the Mask
RCNN predicted articulation parameters, and perform an
internal check: IsPlanGood [β(f(x)),SeqIK(θ0)(β(f(x)))]
Once an initialization passes the internal check, it is re-
turned. This initialization is used to find a motion plan for
ground truth articulation parameters. A success is defined as
IsPlanGood [w,SeqIK(θ0)(w)], with the only difference be-
ing that collision checking is done with the full environment
scan as opposed to the partial view from the depth image.

λ Parameter. While UfC predicts uncertainties exhibited
by the vision system, it is possible that the uncertainties that
are useful to extract robust motion plans are correlated with
perceptual uncertainties but not identical. To account for this

TABLE V: Downstream results on the test set.

Prismatic Hinge

MPAO [5] 0.804 0.349
No Input 0.791 0.349
Object Appearance (ours) 0.804 0.358

possible mismatch, we use λg(x) as the standard deviation
for sampling perturbations for UAP, where λ is a category
specific scalar hyper-parameter.

Figure 5 shows the effect of varying λ for the different
methods on the validation set. We observe that at the optimal
λ value, uncertainties from the image-based UfC model
outperform both the no error modeling (MPAO [5]) and non-
adaptive uncertainity baseline. We select the best λ for each
category for each method: λ = 0.4 for prismatic objects and
λ = 0.2 for hinge-joints.

Results. Table V shows results on the test set. We observe
that the trends from the validation set translate to the test
set, and image-based UfC is better than or on-par with no
explicit uncertainty modeling as well as the non-adaptive no-
image uncertainty model. Furthermore, comparison to the
non-adaptive model demonstrates that poor error modeling
can actually hurt downstream performance, underscoring the
necessity of good uncertainty modeling.

VIII. CONCLUSION

Motivated by the need to make planning aware of the
inevitable errors in the output of state estimators, we devel-
oped an explicit calibration approach to estimate uncertainty
for deep learning based state estimators typically used in
robotics. We demonstrated that this leads to better uncertainty
estimates than those obtained from ensembling approaches.
We then developed a technique that uses the predicted
uncertainties to generate control strategies that are robust to
errors in state estimation and experimentally demonstrated
the utility of our uncertainties over simpler alternatives.

REFERENCES

[1] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and
scalable predictive uncertainty estimation using deep ensembles,”
Advances in neural information processing systems, vol. 30, 2017.

[2] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration
via bootstrapped dqn,” Advances in neural information processing
systems, vol. 29, 2016.

[3] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning. PMLR, 2016, pp. 1050–1059.

[4] Y. Bahat and G. Shakhnarovich, “Confidence from invariance to image
transformations,” arXiv preprint arXiv:1804.00657, 2018.

[5] A. Gupta, M. Shepherd, and S. Gupta, “Predicting motion plans for
articulating everyday objects,” in International Conference on Robotics
and Automation (ICRA). IEEE, 2023.

[6] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in
ICCV, 2017.

[7] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in ICRA, 2000.

[8] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[9] C. E. Rasmussen, C. K. Williams et al., Gaussian processes for
machine learning. Springer, 2006, vol. 1.

[10] R. M. Neal, Bayesian learning for neural networks. Springer Science
& Business Media, 2012, vol. 118.

[11] D. J. MacKay, “A practical bayesian framework for backpropagation
networks,” Neural computation, vol. 4, no. 3, pp. 448–472, 1992.

[12] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration
of modern neural networks,” in International conference on machine
learning. PMLR, 2017, pp. 1321–1330.

[13] B. Zadrozny and C. Elkan, “Obtaining calibrated probability estimates
from decision trees and naive bayesian classifiers,” in Icml, vol. 1,
2001, pp. 609–616.

[14] ——, “Transforming classifier scores into accurate multiclass proba-
bility estimates,” in Proceedings of the eighth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, 2002,
pp. 694–699.

[15] J. Platt et al., “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” Advances in large
margin classifiers, vol. 10, no. 3, pp. 61–74, 1999.

[16] A. N. Angelopoulos and S. Bates, “A gentle introduction to confor-
mal prediction and distribution-free uncertainty quantification,” arXiv
preprint arXiv:2107.07511, 2021.

[17] Y. Liu, N. Mishra, P. Abbeel, and X. Chen, “Distributional instance
segmentation: Modeling uncertainty and high confidence predictions
with latent-maskrcnn,” arXiv preprint arXiv:2305.01910, 2023.

[18] M. Lauri, D. Hsu, and J. Pajarinen, “Partially observable markov
decision processes in robotics: A survey,” IEEE Transactions on
Robotics, vol. 39, no. 1, pp. 21–40, 2022.

[19] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial intelli-
gence, vol. 101, no. 1-2, pp. 99–134, 1998.

[20] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “Despot: Online pomdp
planning with regularization,” Advances in neural information process-
ing systems, vol. 26, 2013.

[21] R. D. Smallwood and E. J. Sondik, “The optimal control of partially
observable markov processes over a finite horizon,” Operations re-
search, vol. 21, no. 5, pp. 1071–1088, 1973.

[22] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of markov
decision processes,” Mathematics of operations research, vol. 12,
no. 3, pp. 441–450, 1987.

[23] C. Lusena, J. Goldsmith, and M. Mundhenk, “Nonapproximability
results for partially observable markov decision processes,” Journal
of artificial intelligence research, vol. 14, pp. 83–103, 2001.

[24] H. Jiang, Y. Mao, M. Savva, and A. X. Chang, “Opd: Single-
view 3d openable part detection,” in Computer Vision–ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXXIX. Springer, 2022, pp. 410–426.

[25] X. Sun, H. Jiang, M. Savva, and A. X. Chang, “Opdmulti: Openable
part detection for multiple objects,” 2023.

[26] J. Liu, A. Mahdavi-Amiri, and M. Savva, “PARIS: Part-level recon-
struction and motion analysis for articulated objects,” in Proceedings
of the IEEE International Conference on Computer Vision (ICCV),
2023.

[27] X. Li, H. Wang, L. Yi, L. Guibas, A. L. Abbott, and S. Song,
“Category-level articulated object pose estimation,” arXiv preprint
arXiv:1912.11913, 2019.

